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Laguerre Mathematics in 
Optical Communications

The mathematical studies done by Edmond Nicolas Laguerre in the 19th century 

laid the foundation for contemporary optical communications. 
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aguerre’s name comes up in the world of optical 
communications as many times as Fourier’s does 
in diff raction optics. Perhaps one of the fi rst times 
his name was invoked was in 1965, when the laser 
was in its infancy. At an important Congress of that 

pioneer period, Roy J. Glauber noticed that the photocount 
distribution of a monomodal fi eld, which results from the 
superposition of a coherent excitation and a chaotic one, pre-
sented a generating function with “the same form as the gener-
ating function for the Laguerre polynomials.” (Th e conference, 
titled “Th e Physics of Quantum Electronics,” took place in San 
Juan, Puerto Rico, on June 28-30, 1965.) As a consequence, 
he derived a photocount distribution expressed in terms of the 
Laguerre polynomials Ln(x), which are defi ned by:

                .                     (1)

 At the same conference, M. Scully, W.E. Lamb and M.J. 
Stephen noticed that laser light produced photon statistics that 
were quite diff erent than the case of blackbody radiation; in 
fact, they approached Poisson statistics. 

In those years, the photon statistics had been deeply inves-
tigated, both theoretically and experimentally. Glauber had 
just proposed his model of “coherent states,” for which he was 
awarded the Nobel Prize in Physics in 2005, and experimental-
ists subsequently confi rmed his theoretical predictions.

Again in 1965, Gerard Lachs, in a seminal paper published 
in the May Physical Review (and hence before the San Juan 
Conference) treated the “theoretical aspects of mixtures of ther-

mal and coherent radiation.” He proposed that the photocount 
distribution p(n) should have an analytical expression, in which 
the confl uent hypergeometric function 1F1(–n,1,x) appeared. 

Indeed, the confl uent hypergeometric function, with its 
fi rst argument negative and equal to –n and second argument 
equal to unity, can be rewritten as a Laguerre polynomial Ln(x) 
of order n, as also shown in the fundamental book by R.M. 
Gagliardi and S. Karp a few years later. So the expression of 
the photocount probability for “mixed light” is the following 
Laguerre distribution:

                                                                                (2)

[ The experimental photon counting distribution ]
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The experimental results 
reported in this fi gure 

(© 1966 IEEE), from F.T.
Arecchi et al. IEEE J. Quan-

tum Electron. 2, 341-50, 
confi rmed the theoretical 

predictions of R.J. Glauber: 
The curve G is the typical 

Bose-Einstein photon distri-
bution of a “thermal” source 
(chaotic light); the curve L is 

the predicted Poisson dis-
tribution of the laser source 

well above threshold (coher-
ent light) and the curve S 
is the curve pertinent to a 
mixture between chaotic 

and coherent light. All the 
curves are well represented 
by an expression containing 

the Laguerre polynomials 
(see equation 2 in the text).

© 1966 IEEE

[ Laguerre polynomials up to the 4th order ]
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Photocount probability distribution in the presence of a mix of 
chaotic (thermal) and coherent (laser) light. The plotted curves 
obey the Laguerre distribution described by eq. 2, with the same 
photocount average of the mixed light (equal to 10) and different 
values of the coherent (mS) and chaotic (mN) photocount averages. 
The ranges from the Bose-Einstein distribution for a thermal 
source (i.e., optical noise without signal) to the Poisson distribu-
tion for a laser source are well above threshold (i.e., optical signal 
ideally noiseless).

The Laguerre-Gauss functions with first index n ranging from 0 to 
3 and second index k equal to 0. The Laguerre-Gauss functions 
are a good orthogonal basis for expanding in series the radial 
field distribution of the optical fiber modes. The gray-shaded  
region depicts the longitudinal section (that is onto a plane in-
cluding the optical fiber axis) of a radially varying index profile.
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[ The experimental photon counting distribution ]

The statistical properties of the superposition of coherent and chaotic 
light became very relevant to optical communications when the optical 
amplifier appeared as a key element in fiber-optic systems. 

where mcoh  and mth are the average photocounts of the coherent 
and thermal (or more in general “chaotic”) part of the mixed 
light, respectively. An interesting aspect of the equation, as 
shown in the figure below, is that, when the strength of the 
coherent light goes to zero, the distribution reduces the Bose-
Einstein distribution; however, when the chaotic light decreases, 
the distribution converges to the Poisson distribution of the 
coherent light.

Actually, equation (2) refers to the mixture of monomodal 
chaotic light and coherent light. The monomodality condition 
is fulfilled for a polarized component of the radiation emitted 
by a spatially coherent thermal source, when the length of time 
T of the observation interval in the photon counting measure-
ment—i.e., the observation time—is much less than the coher-
ence time tc of the source. 

The photocount probability can be generalized to the case of 
superposition of multimodal chaotic light and coherent light by 
means of the associated Laguerre polynomials, defined as
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[ Plot of the Laguerre-Gauss functions ]
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and which can be easily calculated by the recurrence relation

                                                                           .    (4)

The Laguerre distribution becomes, in the general case of the 
coherent and M-mode chaotic light mixture:

                                                                               .(5)

For spatially coherent polarized thermal light, the number 
of modes M can be approximated by the ratio T/tc, when the 
observation time is much greater than the coherence time 
for a high number of modes. In this case, one can intuitively 
picture T/tc as the number of statistically independent samples 
of the optical intensity in an observation interval and identify 



Edmond Nicolas Laguerre was born in 
1834 in a small French village called 

Bar-Le-Duc. In 1853, he applied to the 
Ecole Politechnique, the already famous 
military French college. After various vicis-
situdes, he remained there as an assistant 
and then as a “répétiteur” of the course 
of mathematical analysis. In 1885, the 
year before he died, he was elected to the 
French Académie des Science with the 
sponsorship of Camille Jordan. 

During his relatively short life, he pub-
lished a remarkable 140 papers on the 
principal branches of mathematics. One 
of these papers, which was published 
in 1879 in Bulletin de la Société Mathé-
mathique de France, introduced what are 
now called the Laguerre polynomials. 

Laguerre was mainly interested in pro-
jective geometry, differential geometry and 
algebra methods. He didn’t spend much 
time considering the polynomials that 
made him so famous.

Who was Laguerre? 
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this ratio as the number of temporal modes. A more precise 
expression for the number of temporal modes, and hence for 
M, in the case of a single polarization mode and single spatial 
mode, is

                                                          ,                      (6)

where γ(t) is the normalized autocorrelation function of the 
optical fi eld amplitude (i.e., the degree of fi rst-order coherence) 
of the chaotic component.

Th e statistical properties of the superposition of 
coherent and chaotic light became very relevant to optical 
communications when the optical amplifi er appeared as a key 
element in fi ber-optic systems. Th is is because “mixed light” 
is exactly the light obtained after the optical amplifi cation 
of coherent light. In fact, the optical amplifi er increases the 
coherent signal by stimulated emission of photons. However, it 
also introduces an unavoidable amount of “chaotic” light given 
by amplifi ed spontaneous emission (ASE). 

Hence, the Laguerre distribution provides a synthetic but 
powerful law that describes the photon statistical properties of 
amplifi ed optical communication signals. In particular, from 
the photon number average and variance, the degradation of 
the optical signal-to-noise ratio (OSNR) can be evaluated, and 
the noise fi gure of the optical amplifi er determined.

For a long time, the Laguerre polynomials remained hidden 
to everyone but specialists, until they were recognized by E. 
Schrödinger in 1926 as a solution for the radial part of “his” 
equation when applied to the hydrogen atoms. By separating 
the angular and radial variables, Schrödinger solved a second-
order diff erential equation in the function R(r), where r 
represents the distance of the electron from the nucleus. 

Schrödinger discovered that this equation admits as 
eigensolutions the Laguerreschen orthogonalfunktionen—that is, 
the orthogonal functions obtained from the associated Laguerre 
polynomials. In fact, mathematicians know that, by using 
Laguerre polynomials, it is possible to recover useful orthogonal 
functions called associated Laguerre functions

                                                   .                       (7)

Th ese satisfy the following orthogonality condition

                                                           .        (8)

Hence, Schrödinger found another very important use of the 
Laguerre polynomials in the associated orthogonal functions, 
which are the eigenfunction of the quantum structure (the 
hydrogen atom) described by the diff erential equation under 
examination.

Surprisingly, the associated Laguerre functions have been re-
discovered as a solution to a problem that is completely diff er-
ent from the one analyzed by Schrödinger from a physical point 
of view, and yet very similar to it mathematically: the problem 
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of the propagation of light beams in a gradient-index-guiding 
media. 

In 1967, W. Streifer and C.N. Kurtz recognized that the sca-
lar wave equation, applied to a radially inhomogeneous media 
with a parabolic profile of the square of the refractive index, 
admits as exact solutions (corresponding to the guided modes) 
the Laguerre-Gauss functions wnk (r); these are just the associ-
ated Laguerre functions with the square of the distance r from 
the propagation axis as argument, apart from a multiplicative 
coefficient:

                                                       .                        (9)

For example, the Laguerre-Gauss functions with first index 
n ranging from 0 to 3 and with second index k equal to 0 are 

plotted in the figure on the bottom right of p. 32, as a function 
of the normalized radial distance.

In the pioneer years of fiber optics, the Laguerre-Gauss 
functions were recognized as an orthogonal basis for  
approximating the modes of weakly guiding fibers with a 
radially varying index of refraction—an alternative to the 
orthogonal Bessel functions, which are solutions for step-index 
fibers. 

Contemporary fiber optics typically operate with small 
refractive index variation in the weakly guiding approximation, 
and with index profiles of complicated shapes that are very 
different from the simple step-index profile. Therefore, it seems 
that the Laguerre-Gauss functions can be a very suitable basis 
for expanding in series the radial field distribution of the guided 
modes propagating in optical fiber, regardless of the refractive-
index profile.

But fiber optics is not the first area within optics to draw 
on Laguerre mathematics. The Laguerre-Gauss functions have 
already played a role in the contiguous field of the propagation 
of laser beams in free space. In fact, in the early years of the 
laser, scientists paid much attention to describing the exact 
shapes of the light beam emerging from laser resonators. 

In this context, G.D. Boyd and H. Kogelnik pointed out 
in 1962 that the radial field distributions of the modes of a 
confocal resonator in cylindrical coordinates, under certain 
conditions, are given by the eigensolutions of an integral 
equation with the same kernel of the Hankel transform. 

This integral equation can be obtained by using the scalar 
formulation of Huygens’ principle in determining the field 
propagating back and forth between the reflectors, under the 
assumptions of large reflectors and field-concentrated near 
the axis (i.e., paraxial approximation), and by imposing self-
reproducing field patterns, for the modes. 

They found the field modes on the central transversal plane 
of the resonator to be the Laguerre-Gauss functions, as these 
functions are self-reciprocal under the Hankel transformation. 
The transverse patterns, in terms of optical intensity, of the 
Laguerre-Gauss mode with first index p (i.e., the radial index) 
and second index l (i.e., the angular index) both range from 
0 to 2, are shown in the figure left in which an angular term 
cos2(lq) is considered.

Then, the field distribution of the modes inside and outside 
the confocal resonator can be derived from the Laguerre-Gauss 
functions by using the Huygens’ principle under paraxial  

The Laguerre-Gauss functions can be a very suitable basis for 
expanding in series the radial field distribution of the guided modes 
propagating in optical fiber, regardless of the refractive-index profile.

[ Optical intensity transverse patterns of the  
Laguerre-Gauss modes  ]

Optical intensity transverse patterns of the Laguerre-Gauss 
modes of a confocal laser resonator, with radial index p and 
angular index l, both ranging from 0 to 2. An angular term  

cos2 (lq) is considered.
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approximation—that is, using the Fresnel diffraction integral 
to obtain the so-called Laguerre-Gauss beams. These beams 
can also be seen as cylindrically-symmetrical solutions to the 
paraxial scalar wave equation. 

Indeed, G. Gobau and F. Schwering arrived at the same 
conclusion one year before (1961) while looking for an elec-
tromagnetic wave beam in which the cross-sectional amplitude 
distribution repeats itself at a certain distance after passing 
through a succession of uniformly spaced phase transformers. 
In the optical domain, such phase transformers are nothing but 
common lenses. 

In conclusion, if we consider the modern optical com-
munication system as a whole, it is surprising how pervasively 
the Laguerre mathematics enter into all the vital aspects of the 
system. 

For example, at the transmitter module, a precise description 
of the laser modes in cylindrically symmetrical resonators (as 
in certain solid-state lasers or VCSELs) and of the beam laser 
propagation in cylindrical geometry is given using the Laguerre-
Gauss functions.

At the optical fiber, the wave-guided propagation modes can 
be approximated with high accuracy by expanding in series the 

Laguerre-Gauss functions, even in presence of modern refrac-
tive-index profiles.

At the receiver, the Laguerre polynomials give a synthetic but 
powerful and accurate description of the photocount statistics 
in the presence of chaotic optical noise, providing consequently 
the mathematical basis for the OSNR evaluation; these are the 
same statistics that rule the photon distribution produced by an 
optical amplifier when the ASE noise photons are mixed with 
the signal-coherent photons.

Hence, after the debt paid by optics to Jean Baptiste Jo-
seph Fourier (another great French mathematician who died 
four years before Laguerre’s birth), it seems that the time has 
come for optical communications to honor Edmond Nicolas 
Laguerre. t

[ Mario Martinelli (martinelli@corecom.it) is a professor of 
optical communications at the Politecnico di Milano in Milan, 

Italy. He is also with CoreCom in Milan, Italy. Paolo Martelli (martelli@
corecom.it) is with CoreCom in Milan, Italy.]
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[ Laguerre mathematics in optical communications ]

Laguerre polynomials and Laguerre-Gauss functions are per-
vasive in optical communications systems and involve all the 
critical issues of the system.

Transmitter optics
The free space propagating beams 
are described by using the Laguerre-
Gauss functions.

Source
The modes of 
cylindrically 
symmetrical laser 
resonators are 
described by 
using the Laguerre-
Gauss functions.

Fiber optics
The propagating modes 
in the weakly guiding 
regime are described by an 
expansion in series of the 
Laguerre-Gauss functions.

Optical amplifier
The photon statistics of the 
ASE plus signal light are de-
scribed by a function involving 
the Laguerre polynomials.

Receiver optics
The free-space 
propagating beams 
are described by using 
the Laguerre-Gauss 
functions.

Photodetection
The photoelectron sta-
tistics are described by 
a function involving the 
Laguerre polynomials.
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